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Abstract

Objectives To estimate the size of organic chemical space and its sub-regions, i.e.
drug-like chemical space and known drug space (KDS).
Methods Analysis of the growth of organic compounds as a function of their
carbon atoms based on a power function (f(x) = A¥B, C = x) and an exponential
function (f(x) = AeBx). Also, the statistical distribution of KDS and drug-like
chemical space (drugs with good oral-bioavailability) based on their carbon atom
count was used to deduce their size.
Key findings The power function (f(x) = A¥B, C = x) gives a superior fit to the
growth of organic compounds leading to an estimate of 3.4 ¥ 109 populating chemi-
cal space. KDS is predicted to be 2.0 ¥ 106 molecules and drug-like chemical space is
calculated to be 1.1 ¥ 106 compounds.
Conclusions The values here are much smaller than previously reported. However,
the numbers are large but not astronomical. A clear rationale on how we reach these
numbers is given, which hopefully will lead to more refined predictions.

Introduction

Computer-based methods are now an integral part of drug-
discovery projects and the concept of chemical space is widely
used.[1–4] Different areas within chemical space are defined
with molecular descriptors and chemical moieties.[5–14] The
most commonly used subspace is the drug-like chemical
space as defined by Lipinski.[15] Furthermore, other regions
such as lead-like and fragment-based chemical space are well
defined.[16–18] Recently, known drug space (KDS) was intro-
duced, a concept based on the simple idea that marketed
drugs have acceptable pharmacokinetic profiles.[19–21]

The size of the chemical space that is of interest to drug
developers is estimated to lie between 1 ¥ 1018 and 1 ¥ 10200

compounds, the usual number given as ~1 ¥ 1060.[2,22,23] It is
therefore highly desirable to deduce a more precise estimate
of the size of chemical space and its subspaces since the
current numbers span hundreds of orders of magnitude. The
aim of this project is to establish the size of organic chemical
space based on the growth of known organic compounds as a
function of their carbon atom count. This allows the statisti-
cal distribution of the drugs populating KDS and drug-like
chemical space according to their carbon atom number to be
used to reduce the number of possible compounds, in other
words to derive the respective sizes of these subspaces.

Methodology

Organic compounds containing C, N, O, F, P, S, Cl, Br, I and/or
H were compiled from the formula indexes of the Merck

Index (2312 molecules)[24] and the CRC Handbook of Chemis-
try and Physics (4305 formulae).[25] Each compound formula
was entered into the ChemSpider (~26 million entries)[26] and
NIST Chemistry WebBook (72618 entries)[27] databases and
the corresponding number of registered compounds for each
molecular formula were recorded, including isomers but
excluding isotopes. The compounds were categorised accord-
ing to their carbon atom number and a sum generated for each
category, in other words the number of organic compounds as
a function of their carbon count. The larger value for every
compound formula from the different databases – Chem
Spider or NIST WebBook – was taken to represent the total
number of compounds populating each of the carbon number
groups; in other words if NIST had more entries it was used
and similarly for ChemSpider. The growth of organic com-
pounds was fitted to a power function f(x) = AxB, where the
number of carbons is the variable (C = x), A is a scaling factor
and B is the power. This function was used to predict
the number of viable organic compounds for carbon atom
numbers from 1 to 100.An exponential function was also used
in the same way (f(x) = AeBx). Furthermore, 1396 approved
small molecule drugs containing fewer than 100 carbon atoms
were collected from the DrugBank 3.0 website[28,29] and classi-
fied by their number of carbon atoms. The drugs with oral
absorption rate higher than 50% or a description of rapid,
complete or high absorption were defined as populating drug-
like chemical space (517 drugs). The drugs used are given in
Tables S1 and S2 in the Supporting information.
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Results

Size of organic chemical space

In this study the count of the number of organic molecules is
based on compounds that are characterised and have an entry
in either of the chemical databases used: Chemspider and/or
NIST Chemistry WebBook. This means that the growth curve
is built from known organic molecules but not hypothetical
ones. When the results are plotted as a function of the mol-
ecules’ carbon numbers it is apparent that after six carbons
the rate of growth of entries is reduced and that the number
of entries declines after ten carbons, as shown in Figure 1.
It can be stated that chemical space containing organic
compounds with relatively few carbon atoms is thoroughly
investigated whereas more complicated molecules are less so
for the simple reason that there are so many more of them and
they are often more challenging to synthesise.

The fitting of the mathematical functions was therefore
only based on the first four to seven carbon atoms, as these
values are expected to be fairly representative of the true sum

of compounds for each carbon group. This is obviously an
approximation and can potentially affect the results. The
results are shown in Table 1.

It was found that a power function (f(x) = AxB) fitted the
trend line of the data best as shown in Figure 2 and is reflected
in good R2 values (see Table 1). An exponential function
(f(x) = AeBx) did not fit the data as accurately as the power
function, i.e. the R2 value of the exponential was 0.934 com-
pared to 0.997 for the power function at six carbons. Other
mathematical functions fitted the increase of organic com-
pounds less accurately. The results using seven carbons were
rejected because for both the power and exponential func-
tions the R2 values are relatively poor. The power function
scaling factor A is very similar for four, five and six carbons,
sitting around 170; the power factor B is also very similar with
a value slightly less than 3. For the exponential fit there is a
much greater variability than for the power function. As the
number of carbons increases, so does the pre-exponential
factor A. The exponential factor B decreases. A further com-
parison between the power and exponential functions was
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Figure 1 The distribution of organic compounds as a function of their carbon atom content derived from the Chemnetbase database.[30] The number
of molecules grows rapidly up to six carbons. A similar distribution shown is seen for ChemSpider and NIST databases.

Table 1 The result of the fitting of power and exponential functions to the growth of known organic molecules as a function of their carbon atom
count. The size of chemical space is estimated for �100 carbon atoms per molecule

Carbons

Power function f(x) = AxB Exponential function f(x) = AeBx

A B R2

Chemical
space size A B R2

Chemical
space size

4 167.03 2.97 0.998 3.7 ¥ 109 60.13 1.35 0.955 4.5 ¥ 1060

5 172.96 2.89 0.997 2.8 ¥ 109 95.18 1.12 0.929 8.3 ¥ 1050

6 168.06 2.95 0.997 3.4 ¥ 109 124.05 1.01 0.934 1.4 ¥ 1046

7 192.20 2.74 0.979 1.6 ¥ 109 208.11 0.82 0.860 9.7 ¥ 1037
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performed with two separate Kolmogorov–Smirnov (K–S)
tests.[31] This method was employed because it is non-
parametric and is well suited for testing the quality of fit of
non-linear data. Although the P values for both were 1, the
exponential function D values were much larger than the
power function D values, which reflects the superiority of the
power function. Furthermore, the use of the power function
also makes intuitive sense because for each carbon group
there is only a fixed number of possible compounds depend-
ing on all the possible combinations of C, N, O, F, P, S, Cl, Br, I
and/or H that can be bonded to each carbon. This is the same
principle used to model the number of possible combinations
of throws of a die, where the total number of possible combi-
nations is calculated as the number of faces on each die raised

to the power of how many dice there are. In this case it is the
number of carbons raised to a fixed power.

In order to deduce an estimate of the size of chemical space,
the power function derived from the fitting curve shown in
Figure 2 was used (f(x) = 168.06x2.95). The estimated value for
each carbon atom category was calculated and these were
summed up to 100 carbons. The cumulative size estimates are
given in Tables 2 and 3. The predicted size of chemical space
�100 carbon atoms is 3.4 ¥ 109 compounds, which is much
lower than the frequently cited value of ~1 ¥ 1060.[2] The pub-
lished size estimates of chemical space vary greatly depending
on the criteria used and it is difficult to make direct compari-
sons. For example, the size of synthetically accessible chemi-
cal space has been estimated to lie between 1 ¥ 1020 and
1 ¥ 1024 molecules.[32] Geysen et al.[33] mention that the size
of chemical space may lie between 1 ¥ 1014 and 1 ¥ 1030. Ogata
et al.[34] estimated the size of chemical space to be only 1 ¥ 108

to 1 ¥ 1019 molecules. Fink et al.[35,36] estimated 26.4 million
compounds from 11 atoms with C, N, O and F, and 9.8 ¥ 108

molecules containing 13 atoms. Finally, neurological drug
space is calculated to be approximately 1 ¥ 1015 molecules.[37]

In general, the size we calculated of 3.4 ¥ 109 is much lower
than most of the estimates previously published, with the
exception of the Ogata prediction.

Size estimation of drug-like chemical space
and known drug space

A total of 1396 small drugs from Drug Bank[28,29] were
arranged into a histogram according to their carbon
atom counts, as shown in Figure 3. The most common
carbon count in drugs is 17, with 82 entries. For the orally
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Figure 2 The number of organic molecules as a function of their
carbon atoms fitted to a power function. The R2 value of 0.997 indicates a
good fit between the power trend line and growth rate of organic
molecules.

Table 2 Estimated size of chemical space, known drug space (KDS), based on the number of carbon atoms

Carbons
Chemical
space size

C17 = 1
total drugs

Ratio between known
drugs and known
organic compounds

Ratio between
known drugs
and all drugs

�20 6.4 ¥ 106 5.3 ¥ 106 2.7 ¥ 104 3.1 ¥ 105

�40 9.4 ¥ 107 1.8 ¥ 107 3.6 ¥ 105 1.0 ¥ 106

�60 4.6 ¥ 108 2.8 ¥ 107 3.2 ¥ 106 1.6 ¥ 106

�80 1.4 ¥ 109 3.2 ¥ 107 1.1 ¥ 107 1.9 ¥ 106

�100 3.4 ¥ 109 3.4 ¥ 107 2.7 ¥ 107 2.0 ¥ 106

Table 3 Estimated size of chemical space, drug-like chemical space based on the number of carbon atoms

Carbons
Chemical
space size

C17 = 1
total drugs

Ratio between known orally
bioavailable drugs and
known organic compounds

Ratio between
drugs and all orally
bioavailable drugs

�20 6.4 ¥ 106 4.9 ¥ 106 1.2 ¥ 104 3.7 ¥ 105

�40 9.4 ¥ 107 1.1 ¥ 107 1.3 ¥ 105 8.6 ¥ 105

�60 4.6 ¥ 108 1.3 ¥ 107 8.6 ¥ 105 9.8 ¥ 105

�80 1.4 ¥ 109 1.5 ¥ 107 2.9 ¥ 106 1.1 ¥ 106

�100 3.4 ¥ 109 1.5 ¥ 107 6.6 ¥ 106 1.1 ¥ 106
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bioavailable drugs (drug-like chemical space) the maximum
was also found at C17, with 39 drugs. The statistical distribu-
tions for KDS and drug-like chemical space are very similar,
except the former has a longer tail into the higher carbon
values.

Three approaches were used to estimate the size of drug-
like chemical space and KDS.

First, it is clear that drugs with 17 carbons are the most
prevalent. Here it is assumed that this is the optimal number
of carbon atoms in drugs and all molecules in this category
are drug candidates. The other carbon categories are calcu-
lated as a fraction of carbon 17: the number at C17 was set as 1
and the rest of the carbon groups were calculated as a fraction
of this figure. For example, C17 has 82 entries and C9 has 50,
giving it a fraction of 0.61. These fractions were then multi-
plied by their corresponding chemical space values derived
from the power function (f(x) = 168.06x2.95). The values for
the carbon categories were summed and the results are given
in Table 2. The number of possible drugs or the size of KDS
�100 carbons is estimated at 3.4 ¥ 107 molecules. The same
procedure was performed for the 517 orally bioavailable
drugs, giving an estimate for drug-like chemical space of
1.5 ¥ 107 molecules (see Table 3).

In the second method employed, the total number of
organic compounds for each carbon count up to 100 was
obtained from the online Chemnetbase database (see Fig-
ure 1).[30] These values were compared with the results previ-
ously collected from Chemspider up to ten carbon counts.[26]

Chemspider has ~26 million entries and the current estimate
of characterised organic compounds is ~30 million.[38] This
means that Chemspider contains the majority of known
organic compounds (87%). It was found that on average the
Chemspider values were three times greater than that of the
Chemnetbase. Therefore, in order to estimate the values of

known compounds in each carbon category, the results from
Chemnetbase were multiplied by three. The number of
known drugs for each carbon group was divided by the value
for known compounds. For example, C17 has 82 drug entries
and an estimated 11,561 known organic compounds, giving a
fraction of 0.007. In some cases this fraction was zero because
there are no known drugs with these carbon counts, which
is unlikely to be a fair representation. To compensate for
this, the average of these fractions was calculated and used
to replace every zero in the 1 to 100 range. The fractions
thus generated were multiplied by their corresponding
values from the power function (f(x) = 168.06x2.95) and
summed over the carbon categories. This resulted in a value
of 2.7 ¥ 107 for KDS and 6.6 ¥ 106 molecules for drug-like
chemical space, as shown in Tables 2 and 3.

In the third approach a fraction was calculated from the
overall total of known drugs. For example, C17 has 82 entries
and there are a total of 1396 small drugs, giving a fraction of
0.0587. These fractions were multiplied by their correspond-
ing chemical space values generated from the power function
shown in Figure 2. These values were summed and the results
are shown in Tables 2 and 3. According to this method KDS
is estimated to have 2.0 ¥ 106 molecules at �100 carbons and
1.1 ¥ 106 molecules for the orally bioavailable drugs.

When these three methods are considered then the
first scenario surely overestimates the size of the subspaces
calculated, since it is impossible that all organic compounds
containing 17 carbon atoms can be drug molecules. For the
second method the number of known organic compounds
has to be estimated based on the ratios of compounds found
in ChemSpider (it is not possible to retrieve this data directly
from Chemspider) and ChemnetBase, and it is difficult to
assess the quality of this estimate. The third method uses the
ratio between known drugs in each carbon category and the
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Figure 3 The distribution of 1396 known drugs according to their carbon count. 82 drugs have 17 carbons, which represents the maximum.
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total number of marketed drugs. This is a simple approach
and in the tradition of Ockham’s razor should give the most
reasonable results.

The simplest way to calculate how many drugs are possible
is to set the number of possible organic compounds at
3.4 ¥ 109 and to note that it is established that ~30 million
compounds have been characterised so far.[38] From these 30
million compounds 1396 drugs have emerged. Assuming a
linear correlation exists between the number of known
organic molecules and the number of marketed drugs, the
value of 1.6 ¥ 105 possible drugs is reached.

In all three scenarios it is found that KDS is larger than
drug-like chemical space. This is in line with the finding that
the molecular descriptors used to define chemical space are
considerably larger for KDS than for drug-like chemical
space. In other words, for KDS, MW � 800, log P � 6.5,
HBD � 7, HBA �15, polar surface area � 180 Å2 and
rotatable bond � 17, while for drug-like chemical space,
MW � 500, log P � 5, HBD � 5, HBA � 10, polar surface
area � 140 Å2 and rotatable bond � 10.[20] In this study, the
only molecular descriptor used is the carbon count of the
benchmarking drugs, making the fractionation of the power
function mathematically feasible. It can be stated that the
carbon content of compounds correlates to some degree
with increasing MW, log P, number of hydrogen bond
donors and acceptors, polar surface area and number of
rotatable bonds, and therefore captures their ability to define
areas in chemical space. In order to improve the estimates
derived in this work, the classical molecular descriptors and
undesirable molecular moieties could be used. The challenge

is to define chemical space unbiased towards molecules with
drug-like properties. This excludes both commercially avail-
able compound collections for high throughput screening
and more generic collections, due to the extensive impact
medicinal chemistry has had on the development of syn-
thetic organic chemistry.

Conclusion

Gaining a robust understating of the nature of chemical space
is critical in order to facilitate the discovery and development
of drugs. The size of this phenomenon is estimated to be
3.4 ¥ 109 molecules, which is a much lower value than pre-
viously reported. The pharmacokinetically benign areas of
drug-like chemical space and KDS are deduced to be 2.0 ¥ 106

and 1.1 ¥ 106 molecules, respectively. This means that
7 ¥ 10-2% of known drugs (1396 drugs) have been discovered
and 5 ¥ 10-2% of all orally bioavailable drugs (517 drugs). The
results presented here indicate that we have hardly started
to tap into the potential that small molecules represent.
This gives us hope that the needs of therapeutic areas such
as cancer, cardiovascular, Alzheimer’s disease, Parkinson’s
disease, diabetes and other conditions will be met by the
development of small molecule drugs.
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Table S2 Drugs with good bioavailability.
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